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Abstract—Differentiable particle filters are an emerging class
of models that combine sequential Monte Carlo techniques with
the flexibility of neural networks to perform state space inference.
This paper concerns the case where the system may switch
between a finite set of state-space models, i.e. regimes. No prior
approaches effectively learn both the individual regimes and the
switching process simultaneously. In this paper, we propose the
neural network based regime learning differentiable particle filter
(RLPF) to address this problem. We further design a training
procedure for the RLPF and other related algorithms. We
demonstrate competitive performance compared to the previous
state-of-the-art algorithms on a pair of numerical experiments.

Index Terms—Differentiable particle filtering, Regime-
switching, Sequential Monte Carlo.

I. INTRODUCTION

Particle filters, first introduced in [1], are a class of Monte
Carlo sampling algorithms that sequentially update the pos-
terior distribution of the unobserved state of a dynamical
system upon receipt of noisy measurements. Systems of this
structure are known as state-space models (SSMs). Particle
filters have found applications in target tracking [2], robot
localisation [3], [4], and financial product risk analysis [5].
Classical particle filtering algorithms require prior knowledge
of the functional form of the SSM. Differentiable particle
filters (DPFs) [3], [6] represent a recent effort to reduce the
required prior knowledge by parameterising part of the model
with flexible neural networks.

We consider the problem that the system of interest may
vary dynamically between a discrete set of candidate state-
space models or regimes. In [7], the authors introduced a
particle filter where the regime choice is assumed to be a
realisation of a Markov chain. In [8] the regime switching
particle filter (RSPF) was introduced as a generalisation to
settings where the regime choice can depend arbitrarily on its
history. The regime switching differentiable bootstrap particle
filter (RSDBPF) [9] learns a neural network parameterisation
of the RSPF using the framework of differentiable particle
filtering. However, the RSDBPF still requires that the prob-

abilistic meta-model that determines regime choice, hereafter
referred to as the “switching dynamic”, is known a priori.

In the particle filtering literature, there have been past efforts
to handle systems where the switching dynamic is unknown.
One such example is the model averaging particle filter
(MAPF) [10] where a separate particle filter is run for each
regime. Computational effort is assigned per filter according to
the posterior probability of each regime. Optionally, the filters
are allowed to occasionally exchange particles; this strategy is
poorly suited to settings where the model is allowed to change
frequently.

In this paper, we introduce the regime learning particle filter,
which uses neural networks to parameterise the switching
dynamic. Our contributions are two-fold:

1) We develop a neural network parameterisation of regime
switching systems, capable of learning the switching
dynamic.

2) We propose a novel algorithm to train differentiable
particle filters with a Markovian marginal component,
that we demonstrate empirically to improve accuracy.

The structure of the paper is as follows: in Section II we
formally set-up the problem the paper addresses; in Section
III we review the required background knowledge. Section
IV introduces the proposed regime learning particle filter
algorithm, with Sections IV-A and IV-B introducing a novel
parameterisation and Section IV-C devoted to a proposed
training strategy. In Section V we demonstrate competitive
performance, with respect to prior state-of-the-art approaches,
on the test environments adopted in previous works. We
conclude this paper in Section VI.

II. PROBLEM FORMULATION

A state-space model describes a system of two components,
an unobserved discrete time Markov process {xt} and its noisy
observations {yt}. In our problem we allow the system to
randomly jump, at any time, between a number of different
SSMs, indexed by {kt}. We impose the assumption that the
choice of model, {kt}, is independent of {xt,yt}, but can
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Fig. 1. Bayesian network representation of the general regime switching
model.

depend arbitrarily on its history. We illustrate this system
graphically in Fig. 1, and represent it algebraically as:

k0 ∼ Kθ
0 (k0) ,

x0 ∼Mθ
0 (x0|k0) ,

kt≥1 ∼ Kθ (kt|k0:t−1) ,

xt≥1 ∼Mθ (xt|xt−1, kt) ,

yt ∼ Gθ (yt|xt, kt) .

(1)

Throughout this paper we will refer to t as the “time-index”;
θ as the “model parameters”; kt, which may only take integers
in the set K = {0, . . . ,K}, as the “model index”; xt as
the “latent state”; and yt as the “observations”. The model
components shall be referred to as follows: Kθ

0 ,K
θ as the

“switching dynamic”; Mθ
0 ,M

θ as the “dynamic models”; and
Gθ as the “observation models”. For the sake of simplicity and
to maintain clarity in our discussion, we allow the overloading
of notations and use Mθ

0 (x0), Mθ(xt|xt−1) and Gθ(yt|xt) to
represent the prior, dynamic model and measurement model,
respectively, when there is a single regime, i.e. the system is a
vanilla SSM. We assume that during training we have access
to the ground truth state, {xt}, but not the model indices, {kt}.

We desire to find an accurate estimator of xt given y0:t,
we propose to do this via a particle filtering estimate of
Eθ [xt|y0:t], denoted by x̂t.

III. PRELIMINARIES

A. Regime switching particle filtering

We first introduce a generic particle filtering framework.
Classical particle filtering algorithms provide inference on
SSMs, i.e. our problem (Eq. (1)) if there were only one regime.

Given an SSM, a particle filter is a procedure to sequentially
obtain an importance sample from its filtering distribution,
P (xt|y0:t). A tutorial on particle filtering can be found
in [11]. The full algorithm is illustrated in pseudo-code in
Algorithm 1.

Algorithm 1 Generic Particle Filter. All operations indexed
by i should be repeated for all i ∈ {1, . . . , N}.
Input: prior M0 dynamic model M

proposal prior Q0 proposal Q
observation model G time length T
particle count N observations y0:T

Output: particle locations x̃0:N
0:T particle weights w0:N

0:T

normalised weights w̄0:N
0:T

1: Sample x̃i
0 ∼ Q0

(
x̃i
0

)
;

2: wi
0 ←

M0(x̃i
0)

Q0(x̃i
0)
G
(
y0|x̃i

0

)
;

3: w̄i
0 ←

wi
0∑N

n wn
0

;
4: for t = 1 to T do
5: Set the resampled indices and weights, Ai

t, w̃
i
t, accord-

ing to the chosen resampling scheme;
6: Sample x̃i

t ∼ Q
(
x̃i
t|x̃

Ai
t

t−1

)
;

7: wi
t ← w̃i

t

M

(
x̃i
t|x̃

Ai
t

t−1

)
Q

(
x̃i
t|x̃

Ai
t

t−1

) G
(
yt|x̃i

t

)
;

8: w̄i
t ←

wi
t∑N

n wn
t

;
9: end for

10: return x̃1:N
0:T , w1:N

0:T , w̄1:N
0,T .

Several quantities can be estimated from the particle ap-
proximation of the filtering distribution; of interest to us are
the approximation of the filtering mean, E [xt|y0:t]:

x̂t =

N∑
i=1

x̃i
tw̄

i
t, (2)

where N is the total number of particles; and the observation-
likelihood:

p̂ (y0:t) =

t∏
s=0

1

N

N∑
i=1

wi
t. (3)

The mean, x̂t, relies on auto-normalised importance weights
so is biased in general [12], but p̂ (y0:t) is unbiased [13]. The
derivation of both equations can be found in [12].

If one is able to express a problem as an SSM then they
can apply particle filtering (Alg. 1). For example, the regime
switching problem (Eq. (1)) can be reformulated as an SSM
by taking the latent state to be {xt, k0:t}, and the observations
as {yt}. This is the strategy the RSPF [8] uses to approximate
the joint posterior P (xt, kt|y0:t).

B. Differentiable particle filtering

Differentiable particle filters (DPFs) [3], [6] propose to learn
an optimal parameter set via stochastic gradient descent (SGD)
on some target loss function, Lθ. The adoption of SGD, rather
than the traditionally preferred expectation maximisation (EM)
algorithm [14], allows the flexibility in model required to use
a neural network parameterisation.

In DPFs the gradient of the loss is calculated by back-
propagating through the filtering process. This raises an issue
for the sampling steps; sampling a continuous distribution in



a differentiable way is straightforward: choose the sampling
output to be a differentiable, deterministic function of its input
and some random variable that is independent of any values
we want to pass gradient through – this is known as “the
reparameterisation trick”. Unfortunately, in the case that the
target distribution is discrete, as it is during resampling, no
such differentiable function exists in general. An alternative
approach is to sample from some prior distribution over the
classes and perform importance sampling.

In practice, although the true prior on the resampling indices
is uniform, a uniform proposal can be too far from the target
distribution to produce effective importance samples. So, at
the cost of biased gradients, we adopt a proposal that is a
mixture of the target distribution, with some probability α; and
a uniform distribution, with probability 1− α. This is known
as “soft-resampling” [4]. More recent unbiased resampling
schemes, such as optimal transport-based resampling [15], do
not apply as they require the latent state to be continuous.
Further detail on DPFs can be found in [16].

In supervised settings, defined as having access to both the
ground truth latent state x0:T as well as the observations y0:T

in training, it is common to directly use the target objective as
the training loss. In the non-regime-switching analog to our
problem, the appropriate loss function is the mean squared
error between the estimated states and the ground truth, as
previously used in [3], [4]:

LMSE (x̂0:T ,x0:T ) =
1

T + 1

T∑
t=0

∥x̂t − xt∥22 . (4)

One can also consider the unsupervised problem, where only
the observations are available during both training and testing.
In this case it is common to use the usual variational inference
approach of minimising an evidence lower bound [17]–[19]:

LELBO (y0:T ) = − log (p̂ (y0:T )) . (5)

Note that, whilst the estimator of the likelihood p̂ (y0:T ) is
unbiased, its back-propagated gradient is not. x̂t and p̂ (y0:T )
are defined in Eqs. (2) and (3) respectively.

The regime switching differentiable particle filter (RS-
DBPF) was proposed in [9] to address the regime-switching
filtering problem (1) where the switching dynamic is assumed
to be known but the other model components are not. It can
be thought of a RSPF where the parameters are learned by
gradient descent. They choose not to employ soft-resampling,
and instead zero out the contribution to the gradient of the
particles due their ancestors at every time-step, improving
gradient variance at the cost of bias. This is found empirically
to improve performance in some cases [20].

IV. THE REGIME-LEARNING PARTICLE FILTER

In this section we propose the regime learning particle filter
(RLPF). We first, in Section IV-A, introduce an equivalent
redefinition of the problem, Eq. (1), that naturally leads to a
structure which we paramaterise in Section IV-B. Finally, we
introduce a novel training strategy in Section IV-C.
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yT
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· · ·
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Fig. 2. Bayesian network representation of the proposed modified regime
switching model.

A. Redefining the model

We find it instructive, both from an implementation and an
understanding perspective, to propose the following reformu-
lation of the regime-switching dynamic in (1):

k0 ∼ Kθ
0 (k0) ,

kt≥1 ∼ Kθ (kt|rt−1) ,

rt≥0 = Rθ (kt, rt−1) .

(6)

One can easily see that this formulation is equivalent to
Eq. (1) by taking Rθ (kt−1, rt−1) = kt−1

⊕
rt−1, where

⊕
denotes concatenation, but doing so requires an unbounded
amount of memory. In practice, and due to our desire to
parameterise the switching dynamic by neural networks, we
apply the practical constraint rt ⊆ Rdr for a constant
dimensionality dr. The problem of learning the switching
dynamic then reduces to finding embedding functions Rθ, and
regime probability masses, Kθ. Kθ

0 can be represented as a
learnable vector, and we define r−1 to be a vector of zeros,
but alternatively it can be learned. We note that {xt, kt, rt} is
a Markov process; it is clear that (6) is an SSM. So particle
filtering (Alg. 1) can be use to estimate the joint posterior
P (xt, kt, rt|y0:t). We illustrate this formulation as a Bayesian
network diagram in Fig. 2.

B. Parameterising the switching dynamic

We propose a neural network parameterisation of the switch-
ing dynamic. It is well known that particle filters for which
the late-time state depends strongly on the early-time state do
not preform well, in fact, permitting strong dependence, one
can construct filters that diverge in variance at any desired
rate [12]. Late-time particles are genealogically non-diverse at
early time and so form poor samples of the early-time state; a
phenomenon often referred to as “path-degeneracy”. For this
reason, we take inspiration from the architecture of the long-
short term memory (LSTM) unit [21] and build forget gates
into our model as:

rt =Rθ (k′
t, rt−1)

=σ (Θ1rt−1)⊙ σ (Θ2k
′
t)⊙ rt−1

+ tanh (Θ3k
′
t)⊙ σ (Θ4k

′
t) ,

(7)
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Fig. 3. Graphical representation of our proposed switching dynamic. Blue
nodes are input/outputs, purple nodes are fully connected network layers with
the specified activation, and yellow nodes are non-learned functions. The
switching probability mass, Kθ (kt+1|rt), is the value at the kth

t+1 index
of the model output Kθ .

where k′
t is the one-hot enconding of the model index; {Θ1:4}

are matrices of weights to be learned; ⊙ denotes the Hadamard
product.

K ′θ (k′
t|rt−1) = |Θ5tanh (Θ6rt−1)| · k′

t,

Kθ (k′
t|rt−1) =

K ′θ
t (k′

t|rt−1)∑
c∈K K ′θ (c′|rt−1)

,
(8)

where · denotes a dot product, and Θ5,Θ6 are additional
learnable weight matrices. We represent the model graphically
in Fig. 3.

As with resampling, Kθ (kt|rt−1) is a discrete distribution;
in order to back-propagate gradients through the network we
use importance sampling to select the model indices.

C. Training the RLPF

We adopt a novel training strategy. Instead of treating the
problem as a supervised regression on x̂0:T with the MSE-
loss LMSE (x̂0:T ,x0:T ) (Eq. (4)) as in previous work [9],
we introduce an additional LELBO ({x0:T ,y0:T }) (Eq. (5))
unsupervised loss term in the training objective.

Lθ
RLPF (x̂0:T ,x0:T ,y0:T ) = LELBO ({x0:T ,y0:T })+

λLMSE (x̂0:T ,x0:T ) ,
(9)

where λ ∈ R+ is a hyper-parameter.
For the supervised term, we run a particle filter on an SSM

defined as in Section IV-A, with the state as {xt, kt, rt} and
the observation as yt. For the unsupervised term, we treat all
the information we have access to in training as observed, i.e.
take {xt,yt} to be the observations. However, in doing so
the observations depend on their history not only through the
state, so is not, by our definition, an SSM. However, treating
the past observations as constant, it is easy to show that the
usual particle filtering algorithm remains correct. We refer to
this strategy as a “marginal filter” as it runs a particle filter
only on the marginal process that is the switching dynamic.
The intuition behind this strategy is that training on the ELBO

Algorithm 2 Regime Learning Particle Filter. The • operator
denotes multiplication of probability densities, and β is the
learning rate according to optimiser choice.
Input: priors Mθ

0 dynamic models Mθ

regime prior Kθ
0 switching dynamic Kθ

observation models Gθ encoding functions Rθ

time length T particle count N
loss coefficient λ observations y0:T

ground truth x0:T

Output: model parameters θ
1: while θ not converged do
2: Run a particle filter (Algorithm 1) to obtain x̃1:N

0:T , w̄1:N
0:T

with inputs:
M0 ← Kθ

0 •Mθ
0 •Rθ Q0 ← Uniform (k ∈ K)•Mθ

0 •Rθ

M ← Kθ •Mθ •Rθ Q← Uniform (k ∈ K)•Mθ •Rθ

G← Gθ T ← T
N ← N y0:T ← y0:T

3: x̂0:T ←
∑N

n=1 x̃
n
0:T w̄

n
0:T , Eq. (2)

4: Lθ
MSE ← 1

T+1

∑T
t=0∥x̂t − xt∥, Eq. (4)

5: Run a particle filter (Algorithm 1) to obtain w1:N
0:T with

inputs:
M0 ← Kθ

0 •Rθ, Q0 ← Uniform (k ∈ K) •Rθ

M ← Kθ •Rθ Q← Uniform (k ∈ K) •Rθ

G0 ← Gθ •Mθ
0 Gt≥1 ← Gθ •Mθ (·|xt−1)

T ← T N ← N
y0:T ← {y0:T ,x0:T }

6: Lθ
ELBO ← −

∑T
t=0 log

(
1
N

∑N
n=1 w

n
t

)
, Eqs. (3), (5)

7: Lθ
RLPF ← Lθ

ELBO + λLθ
MSE, Eq. (9)

8: θ ← θ + β∇θLθ
RLPF

9: end while
10: return θ

loss maximises the data likelihood to bring the learned model
closer to the true model; and the MSE loss serves to guide the
training towards a lower validation objective.

The validation objective is the MSE calculated by running
a filter with the θ learned by optimising the combined loss.
Furthermore, there is no need for the algorithm to be differen-
tiable during evaluation, so there we use the non-differentiable
systematic resampling [22] and the target distribution, Kθ, to
propose the model indices.

We present the full RLPF procedure in Algorithm 2.1

V. EXPERIMENTS

We repeat the experiment set-up adopted in [8] and [9],
where xt, yt ∈ R and, for each of the eight regimes, the
dynamic model and observation model are linear Gaussian and
non-linear Gaussian respectively.

1Our implementation, that was used to generate all results reported in this
paper, can be found at: https://github.com/John-JoB/Regime Switching



A. Dynamic and observation models

M0 (x0) = U (−0.5, 0.5) ,

M (xt|xt−1, kt) = N
(
µM (xt−1, kt) , σ

2) ,

G (yt|xt, kt) = N
(
µG (xt, kt) , σ

2) ,

µM (xt−1) = aktxt−1 + bkt ,

µG (xτ ) = akt

√
|xt|+ bkt ,

[a1, . . . , a8] = [−0.1,−0.3,−0.5,−0.9, 0.1, 0.3, 0.5, 0.9] ,

[b1, . . . , b8] = [0,−2, 2,−4, 0, 2,−2, 4] ,

σ2 = 0.1 ,

(10)

where M0 (x0) ,M (xt|xt−1, kt) , G (yt|xt, kt) are the true
models, and we have defined eight discrete regimes. Interest-
ingly, G (yt|xt, kt) is bimodal, so accurate estimation of the
state at time t requires using information over time-steps. For
example, Regimes 1 and 5 lead to identical distributions on the
observations despite their disparate posteriors. So, knowledge
of the switching dynamic is crucial in accurately estimating
the full posterior of the switching system.

B. Switching dynamic

We test our algorithm on two switching dynamics: a Markov
switching system and a Pólya-Urn distribution. For both
dynamics, Kθ

0 (k0) is uniform over K. The Markov switching
dynamic at non-zero time can be expressed as:

K (kt|k0:t−1) = (k′
t)

T
Bk′

t−1 ,

B =


0.8 0.15 ρ . . . ρ
ρ 0.8 0.15 . . . ρ
...

. . .
...

ρ ρ . . . 0.8 0.15
0.15 ρ . . . ρ 0.8

 ,

ρ =
1

120
,

(11)

where, as before, k′
t is the one-hot encoding of kt. And the

Pólya-Urn distribution:

K (kt|k0:t−1) =
1 +

∑t
s=0 1 (ks = kt)

8 +
∑8

c=1

∑t
s=0 1 (ks = c)

. (12)

C. Baseline Models

The point estimation of states can be considered as a
sequence-to-sequence supervised learning task; we desire to
learn sequence x0:T given the sequence y0:T . As such, we
can apply any state-of-the-art sequence-to-sequence learning
algorithms. We compare with the baseline models of a unidi-
rectional LSTM [21], and a decoder-only transformer model
[23]. The recurrent structure of an LSTM is more alike the
underlying SSMs; however, as transformer models have been
receiving growing attention, we include it for completeness.

The LSTM and Transformer baselines cannot provide an
interpretable statistical output, as the proposed model does.
So, we introduce two particle filtering baselines. The first
is to run a DPF where the latent state is taken to be xt

only. This strategy implicitly assumes that there is no regime

switching so we expect poor performance in the examined
settings. The second is a modification of the model averaging
particle filter (MAPF) [10] to make it differentiable, which
we name “the model averaging differentiable particle filter”
(MADPF). The MAPF was proposed to solve the inverse to
the problem addressed by the RSDBPF; it requires knowledge
of the individual models but not the switching dynamic. The
MADPF is a MAPF trained by gradient descent, analogous to
how the RSDBPF is derived from the RSPF.

We include two oracle approaches: the RSDBPF which
simulates from the true switching dynamic but learns the
individual regimes; and the RSPF which corresponds to a
particle filter run on the true model.

The novel training strategy proposed in Section IV-C and the
parameterisation of the switching dynamic, in Sections IV-A
and IV-B, can be applied independently. So we include two
ablation models, an RLPF trained on solely the MSE loss, and
an RSDBPF trained on our proposed loss, equation (9).

D. Experiment settings

We generate 2,000 trajectories from the model (Eqs. (10)
with (11) or (12)) and use 1,000 for training, 500 for vali-
dation, and 500 for testing. All algorithms are initialised and
trained from scratch for 20 repeats on a different generation of
the dataset. During training and validation, particle filters are
run with 200 particles; this is increased to 2,000 for testing.
The parameter set that obtained the best validation loss is
passed to testing. We use the Adam optimiser with weight
decay [24].

Throughout the experiments, we parameterise each µG and
µM with a two-layer fully connected neural network with
hyperbolic tangent activation on the hidden layer. We set the
dimensionality of rt to the number of models. All other hyper-
parameters are chosen by grid search, on a per-experiment
basis. Soft resampling is only used for the marginal filter.
When using Lθ

RLPF, we impose a prior that the dynamic and
observation model variances are less than 1; or else the ELBO
is lowered rapidly in the first few iterations by raising these
variances, instead of approximating the true model.

It was shown in [8] that, for these experiments, the RSPF
performs equally well whether the model indices are proposed
uniformly or from the target distribution (Kθ (kt)). So, we use
a uniform proposal during training. However, in a case where
there are a large number of very unlikely regimes, a uniform
proposal would lead to highly inefficient sampling. In such
a case, introducing bias-inducing soft-sampling, as we did in
section III-B for resampling, might improve performance.

E. Results

We present the results for both experiments in Table I
including baselines and ablation results, and a comparison of
the computation costs under the Pólya-Urn experiment in Table
II for the non-oracle methods. The Markov times were similar
so are excluded for brevity. For the RLPF and the RSDBPF
the qualification -λ or -MSE denotes whether the experiment
used the proposed training algorithm (Section IV-C), or the



classical MSE only approach. All timing experiments were
performed using an NVIDA RTX 4090 GPU.

For both experiments, the proposed RLPF-λ leads to the
smallest mean squared errors among non-oracle algorithms.
Moreover, being a particle filter, it has a statistical interpreta-
tion; with it one can evaluate properties such as uncertainties,
the data likelihood, and make predictions about future state or
data. The LSTM is the next best in the reported error metrics,
but it does not offer the statistical properties seen in particle
filters. We also note that for both the RSDBPF and the RLPF,
the variants trained using the proposed training objective
achieved lower MSEs and variances than the respective pure-
MSE approaches.

Aside from the Transformer, all algorithms considered scale
linearly in time with trajectory length. However, the relatively
simple architecture of the LSTM and better ability to take
advantage of GPU parallelism give it a significant speed
advantage, as shown in Table II. Achieving better parallelism
for the RLPF to bring its time cost closer to that of the DPF
is left for future work.

TABLE I
FILTERING ACCURACY FOR THE DISCUSSED ALGORITHMS. REPORTED

VALUES ARE THE ACHIEVED MEAN SQUARED FILTERING ERROR,
AVERAGED ACROSS 20 INDEPENDENT TRAINING RUNS.

Algorithm Markov MSE Pólya MSE
Transformer (baseline) 1.579± 0.169 1.508± 0.112

LSTM (baseline) 0.713± 0.114 0.655± 0.027
DBPF (baseline) 4.689± 4.689 2.395± 0.723

MADPF (baseline) 2.688± 0.607 1.987± 0.171
RLPF-MSE (baseline) 0.970± 0.187 0.693± 0.080

RLPF-λ (proposed) 0.698± 0.164 0.613± 0.072

RSDBPF-λ (partial oracle) 0.802± 0.128 0.590± 0.064
RSDBPF-MSE (partial oracle) 1.153± 0.217 0.709± 0.122

RSPF (oracle) 0.274± 0.019 0.413± 0.012

TABLE II
AVERAGE COMPUTATION TIMES PER TRAINING EPOCH (10 BATCHES OF
100 PARALLEL FILTERS OF 200 PARTICLES EACH), AND TESTING RUN (1

BATCH OF 500 PARALLEL FILTERS OF 2000 PARTICLES EACH) ON THE
PÓLYA EXPERIMENT.

Algorithm Av. train epoch time (s) Av. test time (s)
Transformer (baseline) 0.182 0.00310

LSTM (baseline) 0.0145 0.000792
DBPF (baseline) 0.553 0.243

MADPF (baseline) 18.6 3.73
RLPF-MSE (baseline) 4.42 0.620

RLPF-λ (proposed) 6.66 0.612

VI. CONCLUSIONS

In this paper we have proposed a novel particle filtering
approach suited to situations where the model may switch, ac-
cording to some unknown dynamic, between a set of candidate
models whose forms are also unknown. We designed a learn-
ing strategy and demonstrated its superiority experimentally.
Future directions include the incorporation of more advanced
DPFs, more interpretable regime identification procedure, and
more complex test scenarios including real world data.
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